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A new set of balanced equations (to be called planetary semi-geostrophic equations) 
for planetary-scale flow is derived from Hamilton’s principle and constitutes a 
natural generalization of the semi-geostrophic equations of motion. Analogues of the 
global conservation of energy and the Lagrangian conservation of potential vorticity 
follow automatically by introducing approximations directly into the Hamiltonian 
in such a way that time and particle label symmetries are preserved. Two 
approximations are required : first, the kinetic energy associated with the component 
of velocity parallel to the axis of rotation is neglected; and secondly, the Lagrangian 
rate of change of the wind and pressure gradient directions (when projected onto the 
equatorial plane) must be small compared with twice the angular rotation rate of the 
system. Although the first of these approximations entails some loss of accuracy for 
application to the terrestrial atmosphere it is not nearly as severe as that for the 
Phillips type I1 geostrophic equations in which all of the kinetic energy is omitted 
from the Hamiltonian. The resulting equations take exactly the same form as the 
f-plane semi-geostrophic equations apart from a modification to the pseudo-density 
appearing in the continuity equation. They are also amenable to the geostrophic 
momentum coordinate transformation - a device which has had considerable impact 
on the theory of atmospheric fronts. In order to assess the accuracy of the equations, 
three different linearized eigenvalue problems on the sphere are solved and compared 
with the equivalent primitive equation problems. Eigenmodes are least accurate for 
high-zonal-wavenumber disturbances with grave meridional structure. Stationary, 
baroclinic planetary waves with zonal wavenumber less than x7 are shown to  be 
accurately treated. The equations also support equatorially trapped Kelvin and 
Rossby modes which are accurate in the long-wave limit for meteorologically 
relevant equivalent depths. 

1. Introduction 
Arguably the greatest achievement of meteorological science to date has been the 

development and operational use of global numerical models to forecast the weather 
(see e.g. White et al. 1987). Although parametrization of subgrid-scale physical 
processes such as radiative transfer and boundary-layer momentum transport render 
the mathematical problem extremely complicated, most of the success is directly 
attributable to the fidelity with which atmospheric motion is represented by the 
Euler equations of compressible fluid motion. The only filtering approximation it is 
found convenient to introduce is the hydrostatic assumption which removes all but 
the horizontally propagating sound wave and causes negligible error at  scales 
currently resolvable in global models: the resulting equations are known as the 
primitive equation set. 
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Because of the diversity of solutions supported by the primitive equations, much 
of our theoretical understanding has been derived from solutions obtained after 
judicious simplification of the equations. For instance, by assuming motion on a 
spherical planet to  be horizontally non-divergent and the air density uniform, the 
dynamics of planetary Rossby waves were exposed (Rossby 1939; Haunvitz 1940). 
A less severe filtering approximation, based on a scale analysis, was put forward by 
Charney (1948) and this led to the modern quasi-geostrophic theory (see also Charney 
& Stern 1962; White 1977) which provides the basic mathematical framework for 
much of our understanding of large-scale atmospheric motion (e.g. baroclinic 
instability theory). 

Phillips (1963) identified two types of quasi-geostrophic equations ; Type I being 
the above set due to  Charney and Type I1 whose properties were elucidated by 
Burger (1958). Both types have analogues of the global energy conservation and 
Lagrangian potential vorticity conservation properties of the primitive equations 
yet neither is sufficiently accurate as a model of the entire terrestrial atmosphere or 
ocean. Type I is not strictly valid over a wide range of latitudes; it neglects the full 
variation of the Coriolis parameter except where differentiated, and linearizes the 
vertical advection of entropy about an assumed basic-state entropy field which is 
dependent on height alone. In  particular, the Coriolis parameter is constant in the 
geostrophic wind relation unlike the Type I1 equations. The principal difficulty with 
the Type I1 equations is the severity of the approximation to the momentum 
equations - all the acceleration terms are omitted and the horizontal wind is assumed 
to be geostrophic in the continuity of mass and thermodynamic equations. 

A less restrictive class of geostrophically balanced models which could be used with 
more confidence in the spherical domain was identified by Lorenz (1960). These 
conserve global energy though they do not have an analogue of potential vorticity 
conservation on fluid parcels. Numerous other forms of balanced model have been 
proposed and have been classified by McWilliams & Gent (1980) and reviewed by 
Gent & McWilliams (1983). I n  this paper attention will be focused on the semi- 
geostrophic equations proposed by Eliassen (1948) and developed through the use of 
the geostrophic momentum coordinate transformation by Hoskins (1975). The 
importance of the semi-geostrophic equations stems from their conceptual simplicity, 
and analytic solutions have provided much insight into frontogenesis (Hoskins & 
Bretherton 1972) and flow over two-dimensional orography (Pierrehumbert 1985). It 
is now known that the semi-geostrophic equations admit discontinuous solutions 
which ‘in the real world’ correspond to atmospheric fronts and inversions. An 
extended semi-geostrophic theory was developed by Cullen & Purser (1984) and has 
led to a geometrical technique for solving the Lagrangian form of the semi- 
geostrophic equations (Cullen, Chynoweth & Purser 1987a ; Chynoweth 1987 ; 
Shutts, Cullen & Chynoweth 1988). Cullen & Purser recognized that a t  any instant, 
a fluid parcel could be characterized by the vector gradient of a modified pressure 
function (P).  The positions of all fluid parcels within a convex region of space were 
then proved to be uniquely determined by the requirement that  P be convex within 
that domain. The convexity of P corresponds to the physical necessity that the fluid 
parcels be arranged into a convectively and symmetrically stable state. Shutts & 
Cullen (1987) and Cullen et al. (1987 b )  show this to be a minimum energy state. 

The geometrical solution technique allows the implicit geostrophic adjustment 
inherent in the conventional semi-geostrophic theory to  extend to  convectively 
unstable situations: model elements are able to perform a type of penetrative 
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convection. Artificial viscosity is not required and discontinuous solutions are readily 
described. 

Salmon (1983, 1985) has shown how semi-geostrophic theory may be extended to 
situations where the Coriolis parameter is a function of horizontal position. Starting 
with a Lagrangian formulation of Hamilton’s principle for the Euler equations, he 
introduces approximations which preserve the symmetries of the Hamiltonian so 
that analogues of the conservation laws are obtained. A new set of balanced 
equations is obtained (Salmon 1985) which take on a simple form in suitably chosen 
transformed space coordinates. 

In this paper, Hamilton’s principle is used to formulate a new set of balanced 
equations for planetary flow which have the usual f-plane semi-geostrophic equations 
as a special case. The procedure adopted is slightly different from Salmon’s: a 
canonical form for the principle is sought before making any approximations to the 
Hamiltonian. This has the effect of making explicit the Lagrangian nature of 
the basic assumptions underlying the validity of semi-geostrophic theory. The 
geostrophic approximation does not have to be introduced directly into the 
Lagrangian of Hamilton’s principle. It is, in fact, furnished by the variational 
principle itself. Also there is an explicit recognition that the planetary rotation and 
gravitation vectors are not collinear. 

The equations derived here are different from those of Salmon and have more in 
common with the f-plane semi-geostrophic theory. 

2. New balanced equations derived from Hamilton’s principle 
2. I .  Primitive equations 

Following Salmon (1983), the extended form of Hamilton’s principle will be used for 
which particle positions and conjugate momenta are independent coordinates. For a 
compressible, rotating fluid under the action of a gravitational field, Hamilton’s 
principle may be written as 

a[;d7{ 

where the Hamiltonian function H is given by 

H ( 7 )  = lDdr[+(u2+w2+w2)+U+@-p ( J (z) 2 --a ) -T(S-So)  ] (2) 

using a Cartesian representation (x, y, z )  for the physical space coordinates of a fluid 
particle in a system with rotation vector (0, 0, Q) and where (u, w, w) is the velocity 
of the fluid, U(-a,S) is the internal energy, a is the specific volume, S is the gas 
entropy, @(x, y, z )  is the gravitational potential (with centrifugal term absorbed) and 
J is the Jacobian of the transformation between (x, y, z )  and particle label space 
(a, b,  c ) .  Unless otherwise indicated, all dependent variables in (1) and (2) are to be 
regarded as functions of particle label and time 7. Therefore, we may tentatively 
identify (u, v, w) with (E, z,  $). 
Integration over the domain (denoted by D )  is with respect to particle label 
coordinate and d T  = da db dc = d(mass) by definition. 
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Continuity of mass and conservation of entropy, represented by 

Jp$) = a  (3) 

and S = &‘,,(a, b, C) (4) 
respectively, are enforced through the Lagrange multipliers p(a ,  b, c,  r )  and 
T(a ,b , c ,7 )  appearing in the Hamiltonian. Variations made in (1) are such that 
u, v, w, x, y, z,  a and S are treated as independent. 

Consider, for instance, variations with respect to x; (1) then gives 

and since 

or, using (3) and the rule for multiplication of Jacobians, 

If 6x is required to vanish on the boundary of D then the Euler-Lagrange equation 
derived from (51 is 

Similarly, independent variations of y and z give 

and 

av  ax a@ ap 
ar a7 ay ay 
-+2Q-+-+a-  = 0 

aw a@ ap 
a7 aZ aZ -+-+a- = 0. (9) 

Furthermore, independent variations with respect to the remaining functions 
u, v, w, a and S give 

(10) 
ax 6u: - = u, 
87 

8U 
&a: p = - - - ,  

aa 

(14) 
au 
a8 

68: T=-. and 

Equations (lo)-( 12) provide no new information but merely demonstrate self- 
consistency of the definitions ; (13) and (14) show that p and Tare simply the pressure 
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and temperature - consistent with their thermodynamic definition. Therefore, 
(7)-(9) may be written vectorially, with the aid of (10)-(14), as 

(15) 
D 
- V + 2 0 A  V+V@++vp  = 0, 
Dt 

where 
a - ~  a _- - -  --+v.v, t = 7 ,  

a7 - Dt at 

and all dependent variables are regarded as functions of (x, y ,  z ,  t ) .  Equation (15) is 
the Euler equation of motion for an inviscid, rotating fluid. 

The meteorological primitive equations can be obtained for the f-plane case (where 
V @  11 0)  by defining @ = gz and omitting all terms in w from (1). This removes the 
geopotential terms from (7)  and (8) and reduces (9) to the hydrostatic equation : 

aP g+a- = 0. 
a Z  

Extension to planetary flows where the gravitation and rotation vectors are not 
collinear is achieved by expressing (1) in spherical polar coordinates ; omitting terms 
in Dr/Dt (the local vertical velocity) ; expanding the radial coordinate r about a mean 
planetary radius a and neglecting terms of the order of (scale height of the 
atmosphere) /u. 

The hydrostatic approximation is valid, therefore, if the kinetic energy is well 
approximated by that associated with the horizontal components of the flow. If h is 
a typical depth scale and 1 a typical horizontal lengthscale of an atmospheric motion 
system, then conventional scale analysis requires that h2/P 4 1 for the validity of the 
hydrostatic assumption (Holton 1979). Whilst this inequality correctly identifies 
hydrostatic motion in the terrestrial atmosphere, it is not a necessary condition as 
was pointed out by Phillips (1963). The Hamiltonian formulation of the primitive 
equations emphasizes the dependence of the hydrostatic assumption on the smallness 
of the kinetic energy in the vertical motion. 

As shown by Salmon (1983, 1985, 1988), approximations that preserve the time 
and particle labelling symmetries of the Lagrangian in Hamilton’s principle 
automatically imply that the Hamiltonian is an integral invariant and that an 
analogue of potential vorticity conservation exists. These properties will be 
considered later for the new equations to be derived. Before deriving these new 
equations it is instructive to apply the same methods and coordinate transformations 
to be used to a derivation of the Phillips Type I1 quasi-geostrophic equations. A 
simple version of these equations, with slightly greater formal accuracy, results. 

2.2. Phillips Type N quasi-geostrophic equations 
The ‘potential’ energy term U + @  in ( 2 )  can be partitioned into a basic state 
component (for which the gas entropy is a function of pressure alone) and an 
available potential energy component which can be converted into kinetic energy 
(Lorenz 1955). For some scales of motion the available potential energy may 
dominate the kinetic energy; this happens when the Burger number B,, given by 
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satisfies B,  $ 1 where fl is a mean buoyancy frequency (Burger 1958). In  the 
atmosphere this assumption is only valid for the largest scales of planetary Rossby 
wave motion ; on the other hand extensive regions of the ocean have small Burger 
number. 

Motivated by the smallness of the kinetic energy in these situations, all terms in 
(1) involving u, v or w may be removed leaving 

where 

8[:d7{ JD!2(x$-yE)dr-H(7)} = 0, 

H ( 7 )  = ID d r [  U +  @--p { J r s )  -a} - T(S-S,))].  

The Lagrangian in (17) is closely related to that in equation (4.1) of Salmon (1983) 
which was for a shallow-water fluid system with a spatially varying Coriolis 
parameter and rigid boundary at z = 0. Independent variations with respect to x, y 
and z give 

ay a@ ap 
a7 ax ax sx: 2Q----a- = 0, 

ax a@ ap 
a7 ay ay 

sy: -2Q-----a-- = 0, 

a@ ap 
aZ ax 

8.2: --- a- = 0. 

Equations (19)-(21) may be combined to give 

252A V+V@+aVp = 0 (22) 

which is a vector statement of geostrophic and hydrostatic balance. The Eulerian 
forms of the continuity and thermodynamic equations are 

and 

(;+ v.v)a = av* v 

(:t 1 -+v* v s = 0, (24) 

which, together with (22), the definition of S and the perfect gas equation, form a 
closed set of equations. Apart from the inclusion of a small Coriolis term associated 
with the horizontal component of a, the spherical polar expression of this set is 
widely known as the Phillips Type I1 quasi-geostrophic equations or, the Burger 
equations. It is convenient to express them in spherical polar coordinates because @ 
is radially symmetric and atmospheres are highly stratified in the radial direction. A 
consequence of this stratification is that V is dominated by its horizontal components 
and a unique geostrophic wind V,  can be defined such that 

2(k.Q) V, = ak h V p ,  (25) 

where k is the local unit vector in the direction of V@ (Phillips 1963) and V ,  may be 
used in (23) and (24) in place of V.  (Note that (22) does not, by itself, define V 
uniquely.) 
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An alternative and illuminating approach is to express (22)-(24) in ( X ,  Y,  2) 
coordinates, where 

x = x, y = Y ,  z = zap- (p/p*)‘y-’”y], 

where y is the ratio of specific heats (Cp /Cu) ,  p ,  is a constant reference pressure taken 
here to be mean sea-level pressure, 2, is given by 

g is the acceleration due to gravity and a, is the mean specific volume at  p,. The 
partial derivatives can then be shown to transform according to 

(similarly for y),  and 

where 

a a  aP a - = -+U(p)-- 
ax ax ax az 

a aP a 
- = U(p)- - ,  aZ aZ az 

n ( p )  = 2,- - 
( l -y)  p --lh 

YP* d.) 
Using (21), (27) and (28) we obtain 

a@ 
U(p)- = -a az 

a@ - a@ ap 
ax - z + G 

(30) implies that 

which, on substitution into (29) gives 

- 

and similarly for the y-component. 
Equations (19) and (20) may now be simplified to 

and 

a@ 
ax 252v = - 

a 0  
ay’ 

252u = -- 

(33) 

(34) 

and using the perfect gas equation and the definition of potential temperature 6 ,  (31) 
may be rewritten as 

where 8, = p,a,/R and R is the gas constant. Hoskins & Bretherton (1972) 
introduced the pressure-dependent local vertical coordinate Z because it combines 
some of the advantages of pressure coordinates (anelastic continuity equation, 
simplified pressure gradient force terms) with its tendency to approximate physical 
height in the troposphere and give a hydrostatic relation involving potential 
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temperature. Cartesian f-plane problems solved using this transformation invariably 
have horizontal x-surfaces which are quasi-parallel to Z-surfaces so that horizontal 
differentiation holding Z constant can be visualized as virtually the same as holding 
z constant. In its application to planetary flows here, z surfaces are not horizontal and 
d/ax is vastly different from a/aX (figure 1 a )  due to the near-sphericity of Z-surfaces. 
Similarly, one should be aware of the difference between a/aZ holding X and Y 
constant and the usual vertical derivative in 2-coordinates. We may refer to 8/32 as 
an axial derivative to distinguish it from differentiation with respect to Z in the 
direction of VQi (the local vertical, see figure 1 b ) .  It is easy to show from figure 1 ( b )  
t h a t  

where q5 is latitude, r is the distance from the Earth’s centre and LV denotes 
differentiation in the direction of the local vertical. This implies (using (35)) a 
hydrostatic relation of the form 

where ug is the conventional zonal geostrophic wind speed. It is noteworthy that the 
axial hydrostatic balance, (35), implies a radial balance which includes the small 
Coriolis term due to zonal motion. 

Consider now the continuity equation (23) in a Cartesian space whose coordinates 
are (X, Y , Z ) .  This is simply 

where 

and p’ is the density in (X, Y ,  2)-space given by 

But 

and therefore 
iaQi -1 

p’= n ( p ) a -  = p ( Z )  -- , ( E)’ ( g  ax) (39) 

where p(Z) is the pseudo-density defined in Hoskins & Bretherton (1972) as 

P(2) = “*l(P/P*)l’r. (40) 

Now a@/& = g sin $[I + O(h/a)] ,  where q5 is latitude and a is the mean radius of the 
Earth, and so 

(41) P ’ X - .  P(Z) 
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a@,, = Qi, - Q), 

n 

t 

I I I X x X + 6 X  ’ 

i 
:. 6Z+O 

FIQURE 1. (a) Schematic diagram showing the difference between differentiation with respect to 5 

holding z or 2 constant. ( b )  Schematic diagram showing the difference between differentiation with 
respect to 2 in the vertical and axial directions. 

Also sin $ = { 1 - ( X z  + P ) / a z  + O(h/a)}i and since h/a - sin $ may be regarded 
as a function of X and Y ,  so that p’ = p’(X,  Y , Z ) .  The continuity equation in 
transformed coordinates, (38), then assumes the anelastic form 

which, on substitution for u and v from (33) and (34), becomes 

To compare this equation with that derived by Phillips (1963), a transformation 
of X and Y to  latitude + and longitude h is required. The mapping 

Y = asinhcos$+O(h/a) X = acosAcos++O(h/a), 

has a Jacobian of transformation given by 

Jr&? = a2 cos $ sin $ + O(h/a). (44) 
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Multiplying (43) by this Jacobian and simplifying gives 

which, on using (36) and (41), gives 

This equation is the compressible equivalent of equation (6.3) on p. 163 of Phillips’ 
review except for the second and third terms on the right-hand side. As alluded to 
earlier, these result from the inclusion of a small Coriolis term. To show, this, (46) 
may be derived by substituting the following expressions for ug and v g :  

1 a@ 
a aqi 

+ 252 cos $w, 

2Qsin$ug = ---, 

1 a@ 
252 sin qivg = - - 

acosqi ah 

into the continuity equation : 

(47) 

noting the inclusion of the tiny metric term 2wla for air parcels moving radially. 
Since S = C,lnB, the thermodynamic equation (24) may be written as 

or, using (44) and (35) 

Equations (45) and (50) form a closed set involving @ and w. 
Although, as we have seen, this is a very severely approximated balanced set, it 

is widely used in oceanography (e.g. Pedlosky 1979; Anderson & Killworth 1979) and 
has, on occasion, been used to study ultra-long waves in the atmosphere (e.g. Bates 
1977; Lynch 1979). 

Global energy and Lagrangian potential vorticity conservation follow from time 
and particle label symmetries. The details are not reproduced here though the 
method is essentially the same as in 82.4. 

2.3. New ‘planetary semi-geostrophic ’ equations 
Without any regard for accuracy a t  this stage, the first approximation to be made 
is to omit all terms in w from (1).  As was seen in 52.1, this gives the hydrostatic 
approximation for an f-plane system whose axis of rotation is in the z-direction. 
Hamilton’s principle then requires that 

8[:dr{ ax 
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where now 

We now seek a transformation to canonical form by letting 

where M and N are to be the new canonical coordinates, w is an unknown constant, 
B is an arbitrary function of the old and new coordinates and C represents the 
residual terms which, when neglected, define the approximation. 

Inspired by the canonical form of (17) which leads to  the Burger equations, we 
choose 

where F and G are unknown functions to be determined. Substitution of (54) into (53) 
suggests the choice 

which, on rearrangement, gives 

M = w x + F ( a , b , c , r ) ,  N = w y + G ( a , b , c , ~ ) ,  (54) 

~ = 2 5 2 ,  G = - u ,  F = w  

(u-52y)-+(w+52x)- ax aY = - N - - N -  +- a W + W l (  u--w- av ;), (55)  
a7 aT A( E 3 a7 2 452 a7 

with M = 252x+w and N = 252y-u. 
But the last term in (55) may be written as 

u2 + vz ax 
452 a7 
-- 

where x is the angle (measured anticlockwise) that  the velocity vector, projected 
onto the (x,y)-plane, makes with an arbitrary fixed direction. Since in Hamilton's 
principle, variations are taken to vanish a t  the endpoint times to and t,, the term 
(a/aT)(xu+yw)/2 integrates out and (51) and (52)  become 

+U+@-p J - -a -T(S-So) d r .  (57) ( (x:) 1 1 
Our second approximation requires that the term (252)-' ax/& be neglected under 

the assumption that 

condition (A). 
Physically, this implies that  the rate of turning of the wind vector following fluid 

particles (in the (2, y)-plane) is small compared with twice the angular rotation rate 
of the system. Alternatively, it requires that the centrifugal force of the relative 
motion be small compared with the Coriolis force. 

yy 252 a7 .g 1, (58) 
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Independent variations of M ,  N,  x ,  y and z are easily seen to give 

CYM: -- aN - 2Q(M-2Qx),  (59) a7 

CYX 
a@ ap 
ax ax  2Qv = 2Q(M-2Qx) = -+a--, 

a@ ap 
aY aY 6y: -252u = -2Q(2Qy-N) = -+a--, 

a@ ap 
a2 aZ 62: -+a--0. 

For condition (A) to be consistent ‘after the fact ’ we require, using (61) and (62), 
that 

condition (B), where 3 is the angle (measured anticlockwise) that the vector 
V@ + aVp makes with any fixed direction when projected into the equatorial plane. 
Conditions (A) and (B) will be treated as independent since (A) is required to obtain 
the Euler equations (59)-(63) in the first instance and (B) is implied on substitution 
for u and v from (61) and (62). 

Introducing the coordinate transformation described in $2.2 to simplify (61)-(63) 
gives 

a@ 
2Q(2QY-N) = - 

ay’ 

and the evolution equations (59) and (60) may be written as 

DN - a@ 

DM a@ 
Dt ay 

Dt ax’ 
- = -- 

where D/Dt  is the material derivative. 
Equations (65)-(69), together with the continuity of mass and thermodynamic 

equations, are identical to the f-plane semi-geostrophic equations of Hoskins (1975). 
In that case, the velocity component whose contribution to the kinetic energy in 
the Hamiltonian is neglected is directed along the local vertical. This enforces 
the conventional hydrostatic assumption : the accuracy of the semi-geostrophic 
equations then depends primarily on the smallness of particle accelerations with 
respect to the Coriolis force. 
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Condition (58) is one of two conditions Hoskins identifies as being necessary for the 
validity of the semi-geostrophic equations. His second condition requires that : 

IDV/Dtl 4fV 

where V = I il and can be shown to be implied by conditions (58) and (64). 
Planetary-scale flows are also governed by (65)-(69) but the absence of the velocity 

component parallel to the axis of rotation from the kinetic energy renders the system 
relatively less accurate than the f-plane semi-geostrophic equations. Under these 
circumstances the system (65)-( 69) will be called the planetary semi-geostrophic 
(PSG) equations. Only planetary motions that are zonally elongated or have small 
Burger number will be accurately treated. An attempt to quantify the distortion 
inherent in these planetary semi-geostrophic equations with respect to the primitive 
equations is described in $3. 

At this point it is worth emphasizing the extreme simplicity of the Lagrangian 
form of the PSG equations. This, together with the conservation properties to be 
demonstrated, greatly compensates for the loss of accuracy of this system of 
equations. Accuracy alone should not be considered the sole aim when devising 
balanced equation sets since the primitive equations can be readily integrated on the 
computer - in spite of the limitations imposed by fast-moving gravity modes. 

Although the PSG equations are extremely simple in the Cartesian form (65)-(69), 
they are - for some practical purposes - better expressed in spherical polar 
coordinates. As in $2.2,  let 

X = acoshcos$,  Y = asinhcos$ 

so that 

(NB a/aA and a/a$ are at constant 2) and 

X = -asinhcos$i-asin$cosh4, (72)  

Y =  acoshcos$i-asinhsin$~,  (73) 

where A and $ may be identified with longitude and latitude respectively to a high 
degree of accuracy. 

Now (68) and (69) may (using (65) and (66)) be written as 

and 

. a@ 
252 ~t ax ay 

+2QX = -- 
1 D a @  ___- 

a@ +zaY=-. 
252 ~t a Y  ax 

1 D M  -__ 

Multiplying (74) by sinh and subtracting from this (75) x cosh gives 

(74) 

(75) 



558 G .  J .  Shutts 

on using (70)-(73). If ug and vg are the usual eastward and northward components of 
the geostrophic wind given by 

@d 
and ug = -  @ A  vg = 

2Qa sin # cos # 2Qa sin q5 

then (76) may be written as 

D(v, sin q5) 
Dt 

ug u‘ tan # 
a 

+ 252u’ sin # = 2Qu, sin #, + sin q5 (77) 

where the prime on u indicates the full eastward velocity component. Similarly, it 
can be readily shown that the zonal component of the momentum equation becomes 

Du u’v,tan# A- - 252 sin q5v’ = - 252 sin $v,. 
Dt a 

Neglecting the Coriolis term (as i t  appears in (37)), the vertical momentum 
equation (67) then expresses the conventional hydrostatic balance 

To arrive a t  (77) and (78) directly from the primitive equations of motion, not only 
does one have to introduce the geostrophic momentum assumption but also include 
sin# factors in the material derivative of the meridional momentum. This is 
consistent with the neglect of a contribution vgcos$ from the kinetic energy 
term in the Hamiltonian (i.e. the balanced kinetic energy for the equation set is 
+[ui + (vg sin #)‘I). 

2.4. Time and particle label symmetry 

The absence of terms in the integrand of (56) with an explicit time dependence means 
that the action defined by 

where 

is invariant with respect to a relabelling of the time coordinate. Consider a new time 
coordinate 7’ related to 7 by 

such that 

and in the limit ST + 0. 

with time coordinates 7 and 7’ is 

7’ = 7 + &(7) 

87(tl) = &(to) = 0 

Following Salmon (1983), the action difference between two identical realizations 
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cw' 
= 1; d7 67 + O ( W )  = 0, 

cw' - = o  
d7 

and so, since ST is arbitrary, 

or [g(212y-N)2+$(M-Qs)2+U+@]dr= a constant. J D  
Consider now a relabelling of the particles given by 

a' = a+6a(a,b,c,7), b' = b + S b ( a , b , c , ~ ) ,  c' = c + S c ( a , b , c , ~ ) ,  

such that the specific volume and entropy are unaltered, i.e. 

as as as 
aa ab ac 

6s = -Sa+--Sb+-& = 0, 

where S denotes the change due to relabelling. Equation (82) can be readily satisfied 
if c is chosen so that S = S(c)  thereby implying that 6c = 0:  the relabelling therefore 
involves assigning new a and b labels within S surfaces. It then follows from (81) that 

aSa a6b -+- = 0, 
aa db 

which suggests the definition of a perturbation stream function 6q+ given by 

Time differentiation is affected by the relabelling since 

so that 

(83) 

and similarly for aN/&. 

a and b, implying that 
The Lagrangian L(M,  N ,  ( d . M / a ~ ) ,  (aN/i%), 2, y, z ,  a, S )  has no explicit dependence on 
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which, on using (84) and (85), becomes 

Integrating by parts and setting ?I$ = 0 on the boundary of D leads to 

which is zero if the evolution of the system is to be unperturbed by relabelling 
particles. Since S(r is arbitrary 

using the fact that S is a function of c alone. Equation (87) expresses the conservation 
of potential vorticity (q)  following fluid parcels. q may be expressed in (X, Y , Z ) -  
coordinates by noting that 

This may be re-expressed as the determinant of a Hessian matrix by noting that 
(65)-(67) may be written as 

(letting S = O/O,) where P = @ + 2 Q 2 ( X 2 +  P) so that  (88) becomes 

det 0 
4=4522p'g 

where 

3. Planetary semi-geostrophic eigenfunctions and their accuracy 
To provide some quantitative measure of the distortion inherent in the planetary 

semi-geostrophic equations some standard eigenvalue problems in the spherical 
domain have been solved using linearized equations, and compared to eigensolutions 
of the corresponding primitive equation problems. Three physical problems are 
examined ; non-divergent Rossby-Haurwitz waves with a barotropic basic state 
atmosphere a t  rest, stationary planetary Rossby waves for a uniformly stratified 
atmosphere in solid rotation and equatorially trapped waves under the shallow- 
water approximation. 
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3.1. Rossby-Haurwitz waves 
Non-divergent, barotropic flow on the sphere possesses exact travelling wave 
solutions whose stream function takes the form of a spherical harmonic. The 
linearized planetary semi-geostrophic equations (in spherical polar coordinates) 
corresponding to this problem are 

av 
at 

sin2 # 3 + 2Qu' sin # = 20ug sin #, (91) 

(92) 
aU 
2- 25221' sin # = - 2fZ sin $vg, 
at 

where 
1 a@' 1 a@' 

2fZa cos $4 ah ugsin$ = vgsin# = 
252a a# 

Equations (91) and (92) give expressions for u' and v' (respectively) in terms of the 
perturbation geopotential @' ; substitution into (93) then gives a partial differential 
equation in @'. Assume now that @' is a travelling wave of the form 

@' = Re [G,(p) ei(mA-"t) 1 7  

where G,(p) is the wave amplitude and p = sin#; then it can be shown that G,(p) 
satisfies the equation 

where a, = m2 - 252m/a. Since G, = 0 for p = k 1, (94) constitutes an eigenvalue 
problem where a, is the eigenvalue. Eigenfunctions may be expanded in normalized 
associated Legendre functions Pr(p)  so that 

nt 

n-m 
G m h )  = 2 AFPE(P). (95) 

Substitution of (95) into (94) and use of the standard formulae, 

and 

where er  = (4n2 - l)'/(n2 -m2)i gives, on collecting terms, 

12, 

C A ~ { e ~ + l [ a , + n ( l - n ) ] P ~ + ~ + e ~ [ u , - ( n +  1)(n+2)]PT-,} = 0. 
n=m 

The orthogonality of Pr then implies a two-term recurrence relation 

A~1eE,m~-2+A,m+le,m+1~+2 = 0 ( s  = m,m+i ...), 
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where = 0 for some r then i t  can be 
shown that all of the coefficients vanish except APl and A z l  giving a set of 
eigenfunctions GZ)(p) with 

= m2-2Qm/a-s(s+ 1). If the function 

GL)(,u) = A,"_,PP1 +Az,Prm+l (97) 

and 
- 2Qm 

r ( r+  1) -m2 ' 
0-= 

The dispersion relation (98) should be contrasted with the corresponding equation for 
the Rossby-Haurwitz wave, i.e. 

- 2Qm 
r ( r + l ) '  

g=- 

Let v' cos $ = imVm(,u) ei(mA-at) (99) 

and use (92) to obtain an expression for Vm in terms of Gm(p),  then it may be shown 
that 

Using (96), (97) ,  the condition 
Legendre function, it can be shown that 

= 0 and the recurrence formulae for the associated 

- exactly the same spherical harmonic form as the Rossby-Haurwitz wave though 
with the distorted phase speed formula (98). Considering the case m = 1, the angular 
phase speed (crlm) is grossly in error only for the gravest planetary mode r = 1 for 
which the phase speed is -252 rather than the true value of -Q. For r = 2, 0-/m is 
-2Q/5 rather than the true value of -R/3, and r = 3 gives -2Q/11 rather than 
-Q/6 : convergence to the true phase speed is rapid. The accuracy of the modes with 
r 9 m is clearly related to the elongation of the implied eddy circulations in the zonal 
direction so that the contribution of the zonal flow components to the total kinetic 
energy outweighs that of the meridional components (wherein lies the main 
approximation in the derivation of the planetary semi-geostrophic equations). For 
higher zonal wavenumbers the error in the gravest meridional mode ( m  = r )  becomes 
relatively worse since the eddy circulations are then elongated in the meridional 
direction. In  fact, for large r ( = m ) ,  the angular phase speed of these modes tends to 
- 2Q/r  rather than the correct value of - 2Q/r2. 

For at  least two reasons this Rossby-Haurwitz wave test of the accuracy of the 
PSG equations is unduly severe and should not be taken on its own as a measure of 
the practical value of the equation set. First, the Rossby-Haurwitz wave is not an 
accurate model of large-scale travelling wave motion. The rate of retrogression 
(westward propagation relative to  the airflow) is far greater than is observed, due 
primarily to the neglect of divergence and the associated vertical structure of real 
planetary Rossby waves. The total energy associated with these waves involves a 
potential energy component as well as the kinetic energy ; their ratio is given by the 
Burger number defined in $2.2. Therefore, the error introduced through the neglect 
of $(wcos#)~ from the Hamiltonian should be measured against the sum of the 
remaining kinetic energy ($(v sin $)2 +$2) and the potential energy of the wave. As 
shown earlier, for motions with small Burger number the entire kinetic energy may 
be neglected and the Phillips Type I1 equations obtained. 
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To assess the accuracy of the planetary semi-geostrophic equations in a more 
realistic context we look at the properties of stationary, three-dimensional planetary 
Rossby waves and compare PSG solutions with the corresponding primitive equation 
solutions. 

3.2. Stationary, baroclinic planetary waves 

Assume, for simplicity, small-amplitude sinusoidal perturbations of a basic state 
atmosphere in solid rotation with zonal velocity Ocos$ (where is constant) and 
with potential temperature increasing linearly with Z so that 

e = 8,(1 +BZ), 

where B is the static stability ; the zonal wind is supported by a geopotential6 given 

Denoting the wave components by primes we have 

u = Ocos$+u’, v = v’, w = w’, Q, = $+a’, 

(consistent with (79), and dropping the LV subscript from now on so that a/aZ 
represents (a/aZ),,) where the geostrophic wind and hydrostatic relations have been 
used. Substituting the required equations from (103) into the PSG momentum 
equations (77) and (78) with a/at = 0 and neglecting products of primed variables 
gives 

where some factors of (1 & 0/2Qa) have been replaced with unity for convenience in 
view of the fact that Jol/20a 4 1 for typical atmospheric values of 0. The 
conservation of potential temperature can similarly be shown to  reduce to 

Equations (104)-( 106) give expressions for u’, v‘ and w‘ in terms of the perturbation 
geopotential Q,‘: these may be linked through the continuity equation for quasi- 
incompressible flow 

(107) 

We seek stationary planetary Rossby wave solutions with sinusoidal variation in 
h and 2 which tilt westwards with height. These correspond to modes which transmit 
wave energy upwards and would arise in problems with lower tropospheric forcing 
such as sinusoidal orography. 
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Let @’ = Gm(q5’) ei(mA+’’z) where q5’ is the colatitude ; substitute (104)-( 106) into 
(107) and rearrange into an ordinary differential equation for Gm(q5’) so that 

where a,  = m2 + 2Qa/o  and the eigenvalue /c corresponds to (2fz~cv)~/gB. Upward 
energy propagation corresponds to vZA> 0 - otherwise the modes are evanescent. The 
eigenvalue problem for Gm(q5‘) and h requires the specification of polar boundary 
conditions. Orszag (1974) showed that the following natural boundary condition is 

It is not necessary to satisfy these constraints precisely given a truncated spectral 
or pseudo-spectral expansion of the function G, (Boyd 1978). All that is required is 
that the error in satisfying these conditions can be reduced indefinitely by taking 
enough terms in the expansion. The pseudo-spectral approach (using modified 
Fourier basis functions) recommended by Boyd (1978) was used to solve the 
eigenvalue problem. The modified Fourier basis functions O,(q5’) are given by 

sin 4’ cos (jq5’) m odd 
m even, ‘ j (4’)  = { cos (j4’) 

and are associated with a weighting function wi = J(q5-q5;) (6 is the Dirac delta 
function) with 

‘fL* n-o 

where n* is the number of terms in the expansion. If (108) is written as 

L(Gm) = 0, 

where L is the implied differential operator, then the pseudo-spectral method gives 
n, equations nzl{ j = O  IwiL(B,)sinq5’d$’ I aj = 0 (i = O,n, - l )  (110) 

which may be written as a matrix equation of the form 

DA = ~ E A ,  (111) 

where A is the coefficient vector whose components are a,, a,. . . an,-, and D and E are 
two matrices. The matrix eigenvalue problem (111) was solved using a standard 
routine in the NAG mathematical subroutine library. G,(q5’) can be obtained by 
substituting the a, values into (109) and evaluating the sup .  The vertical wavelength 
1, of the stationary Rossby wave can be obtained from h using 

Primitive equation solutions corresponding to the above YSG eigenvalue problems 
were obtained by the pseudo-spectral technique as used by Ahlquist (1982) for 
travelling planetary-scale waves. For both PSG and primitive equations the 
following parameter values were chosen : 

fz = 7.292 x lop5 s-l, a = 6.371 x lo6 m, = 14.14 m s-l, gB = 1 x lop4 9-l 
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and eigenvalues were re-expressed in terms of the corresponding vertical wave- 
lengths. The resulting eigenfunctions were normalized so that 

lG&sin$’d$‘= 1. 

Figures 2 (a)-2 ( d )  show the gravest antisymmetric geopotential perturbations from 
the PSG equations (solid line) and primitive equations (dashed line) for wavenumbers 
1, 3, 5 and 7 respectively. Also indicated are the corresponding vertical wavelengths 
with negative values representing decay lengths if the waves are evanescent. The 
overall comparison is excellent : only wavenumber 7 shows signs of substantial 
discrepancy. 

3.3. Equatorially trapped waves 
If the PSG equations are to be integrated over a spherical domain it is important to 
establish the characteristic behaviour of wave motions near the equator. The 
equatorial beta-plane analysis of Matsuno (1966) revealed that amongst other species 
of wave motion there were eastward-propagating Kelvin waves and westward- 
propagating Rossby waves (symmetric in pressure about the equator). These have 
non-zero pressure perturbation along the equator implying an infinite meridional 
geostrophic wind component. Any system of balanced equations (e.g. Salmon’s 
variable- f equations) using the geostrophic wind approximation in the acceleration 
terms will fail to describe these important equatorially trapped modes. The PSG 
equations, however, do not suffer from this defect since the meridional acceleration 
term is sin $D(v, sin$)/Dt which vanishes at the equator. By good fortune, the 
kinetic energy associated with meridional motion is &vg sin $)2 and so remains 
bounded a t  the equator. The following analytic study shows that well-behaved 
Rossby and Kelvin modes result, and are accurate in the long-wave limit. 

The equations to be used are (91)-(93) except for the addition of a free-surface 
term + c - ~  cos $ a@’/at included on the left-hand side of the continuity equation (93). 
@‘ then represents g times the deviation of the depth of a shallow fluid from its mean 
value H ,  and c2 = gH (i.e. the usual shallow-water approximation). By assuming the 
same form of travelling wave as in $3.1 we obtain the meridional structure equation 

(1-P2)---- d2G, 2 dG, m2 

dP2 P dP 

where A = 252a/c. The first-derivative term can be removed from (1 13) by defining 
a new dependent variable GZ(p) such that 

which on substitution into (113) can be shown to give 

m2 (3p2-2) - Y ] G Z  p2h2 = 0. 
2 2 +  2 1- (1-P ) P ( P2I2 1-P 

Inverse powers of 1 -p2 may be expanded (for small p) using the binomial series so 
that the terms O(p4) are neglected ; this leads to 
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FIGURE 2 (u, 6).  For caption see facing page. 



Planetary semi-geostrophic equations 567 

1 .O 

0.5 

@' 0 

-0.2 

- 1s 

1 .O 

0.5 

@' 0 

-0.5 

- 1.0 

FIGURE 2 (u-d). Gravest antisymmetric eigenfunctions G,(,u) : m = 1 ,  3, 5 and 7 respectively for 
PSG equations (solid line) and primitive equations (dashed line). In (a) these lines are 
indistinguishable when plotted. 
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Using the definition a, = m2-2Qm/a, (116) may be written as 

%+[4n+2a+2--,-pi P* 2 l  G;C, = 0, 

where p = yp*, y2 = ( r n 2 + ~ 2 + 2 ~ r n / a ) + ,  a = - 2  + s  

and 4n+2a+2 = - (1+2Qm/a)  y 2 .  (118) 

G;C,(P*) = pL"*ftexp ( - -bW; (p : )>  (119) 

Equation (1 17) has solutions 

where LE is the generalized Laguerre polynomial of order n.  Equation (118) 
constitutes a dispersion relation (u = a ( m , n ) )  for the two branches a = +:, -%, 
which correspond to antisymmetric and symmetric modes respectively (in G,). 

Consider the case a = - #  with A2 % i , m 2 ,  12Qmlal; (118) reduces to 

2Qm 
(4n-1)A x- 

a 

or 
au C 
-N-- 

N 

m 4n-1'  

For n = 0, the phase speed au/m is approximately equal to + c, corresponding the 
eastward-propagating Kelvin wave. The n = 1 mode has a phase speed of -$c and 
corresponds to the gravest westward-propagating Rossby wave. The pressure 
perturbation eigenfunctions are 

for the Kelvin wave (n  = 0), and 

for the gravest symmetric Rossby mode. 
Both closely agree with the corresponding primitive equation eigenmodes in this 

limit (large h2).  Using the values chosen for 52 and a in $3.2 and a gravity wave speed 
c = 40 m s-l, A = 23 which implies that m2 << A2 if m < 7.  The approximation 
(2Qm/a( 4 A2 implies that 

14n- 11 4 h 

which for these parameters is only true if n = 0 and 1. 

have an approximate phase speed formula 
By similar arguments to those given above, the antisymmetric eigenfunctions 

au C 
- N  

N -- 
m 4n+5'  

which holds if h2 % m2 and h % 4n + 5. 
Table 1 shows values of normalized frequency (u*) for odd zonal wavenumbers 1-7 

obtained using (118) compared to those of the usual equatorial beta-plane analysis 
based on the primitive equations. Three wave modes are featured : the Kelvin wave 
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Kelvin wave 

m 1 3 5 7 

PSG 0.151 0.449 0.737 1.01 
Prim 0.147 0.442 0.737 1.03 

Gravest symmetric Rossby wave PSG -0.0517 -0.1538 -0.252 -0.346 
Prim -0.0474 -0.1415 -0.211 -0.264 

Gravest antisymmetric Rossby wave PSG -0.0326 -0.0969 -0.159 -0.217 
Prim -0.0316 -0.0860 -0.134 -0.173 

TABLE 1 .  Normalized frequency n* 

(a = -%, n = 0 ) ,  and the gravest symmetric (a = -$,n = 1) and antisymmetric 
(a = +;, n = 0) Rossby waves. The normalized frequency CT* is defined by 

to conform with the scaling adopted in Matsuno’s equatorial beta-plane analysis and 
that in common usage (e.g. Gill 1982). Further comment on these frequencies will be 
left until the next section. 

For the antisymmetric modes, the perturbation pressure varies as p3 about the 
equator so that ug = vg = uf = 0 and vf is finite a t  p = 0. Using (119) in the zonal 
momentum equation i t  can be shown, after arduous algebraic manipulation, that  v‘ 
varies as p a t  the equator. Also uf = ug and 

au 
at 

3 + 2 5 2 p v g = 0  at p = O .  

Only vg becomes infinite a t  p = 0 and this has no adverse effect in the PSG equations 
since vg is always associated with a factor sin6 in the momentum equations. 

4. Discussion 
In  $2 i t  was shown that by approximating Hamilton’s principle for a perfect fluid 

in a way that results in new canonical coordinates, a simple set of filtered equations 
of motion - consistent with the principle - can be derived. These equations 
automatically have analogues of the conservation properties of the unapproximated 
equations such as global energy conservation and Lagrangian conservation of 
potential vorticity. It was also shown that the Burger equations (Phillips quasi- 
geostrophic type 11) are obtained if the kinetic energy is omitted from the 
Hamiltonian. X and Y are then the canonical coordinates and the equations of 
motion are (rewriting (33) and (34)) simply 

1 a@ =--- a~ i a@ ax 
a7 251ax’ a7 2 5 2 2 ~  
_ -  - 

i.e. the geostrophic wind relation, By choosing canonical coordinates M( =252x+ w) 
and N(=252y-u),  and neglecting both a term representing the ratio of the 
Lagrangian rate of turning of the wind direction to  2 0  and the contribution of the 
axial motion (parallel to 9) to the kinetic energy, the semi-geostrophic evolution 
equations 

 IN a@ a~ a@ 
a7 ax’ a7 ay 
_ -  - = -- -- 
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are obtained ((68) and (69)). In  the f-plane theory, the latter assumption is extremely 
accurate : for planetary flow it entails the neglect of a significant amount of kinetic 
energy depending on the degree of zonality of the motion. Large-scale planetary 
motion in the terrestrial atmosphere is highly anisotropic with zonal velocity 
perturbations dominating meridional flow perturbations (Charney 1971 ; Shepherd 
1987). Atmospheric flow on Jupiter and Saturn is even more highly biassed towards 
zonality (Ingersoll et al. 1979). Rhines (1975) has demonstrated that zonality is a 
natural state towards which ‘turbulent ’ two-dimensional flows should migrate in the 
presence of a latitudinal gradient in the Coriolis parameter. It seems fitting, 
therefore, that the planetary semi-geostrophic set proposed here becomes highly 
accurate in this limit. 

Consider the following alternative viewpoint regarding the motivation for the PSG 
set. Any rectilinear flow in an f-plane system can be set up in exact balance with a 
certain pressure and density field. We can regard such a straight flow as being the 
natural balanced state : this underlies f-plane semi-geostrophic theory. In a spherical 
rotating system, the simplest natural form of balanced motion is pure zonal flow 
which, apart from a small centrifugal term, is the limit in which the PSG equations 
become exact. To this extent, the PSG equations may be viewed as a logical 
extension of f-plane semi-geostrophic theory. 

The linearized examples shown in $3  confirm the accuracy of the PSG set for 
zonally extended non-divergent barotropic motion ; baroclinic, planetary waves with 
grave meridional structure and zonal wavenumbers up to 7 ,  and for equatorial 
Rossby and Kelvin modes. Since real planetary wave motions are associated with 
potential as well as kinetic energy, the Rossby-Haurwitz wave limit considered in 
$3.1 is not a fair test of the usefulness of the PSG set. Most of the energy in 
atmospheric flow is contained in the zonal and low-wavenumber components (m = 
1 4 ) .  An observational study by Shepherd (1987) shows that much of this low- 
wavenumber energy projects onto zonally anisotropic modes, particularly for 
stationary waves. These modes are also characterized by small Burger number so 
that the neglect of the axial component of velocity in the Hamiltonian causes 
minimal degradation of the accuracy. This is borne out by the analysis of $3.2.  

Perhaps most surprising of all is the success of the PSG set in representing the 
meteorologically important equatorially trapped modes. For zonal wavenumbers up 
to 7 table 1 shows that the frequency error for Kelvin waves is a t  most 3 %. In other 
balanced sets based on the geostrophic wind assumption these modes must be 
excluded because wg + co a t  the equator. Even the commonly used linear balance 
equations have no Kelvin wave mode - a deficiency identified by Moura (1976). The 
accuracy of the PSG Kelvin mode is, of course, due to its very small meridional 
velocity component (zero in the equatorial beta-plane analysis) implying little loss of 
accuracy in neglecting the axial component of velocity in the Hamiltonian. Also, 
since air parcels almost follow latitude circles the Lagrangian rate of turning of the 
wind is very small. However, condition B (64) requires that the Lagrangian rate of 
turning of the geostrophic wind also be small compared with 252 : i t  is this constraint 
that limits the accuracy of the Kelvin wave for short waves. 

The equatorial Rossby waves are less accurate in general with, for m = 1, a 
frequency error of 9 YO for the gravest symmetric mode and 3 % for the antisymmetric 
mode ; a t  m = 7 these errors rise to 27 YO and 23 YO respectively. The above figures for 
Kelvin and Rossby mode frequencies are based on an equivalent depth corresponding 
to a gravity wave speed of 40 m s-l. For smaller equivalent depths and gravity wave 
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speeds, the equations are more accurate : c = 40 m s-l is generally regarded as being 
typical of the first baroclinic mode of the tropical atmosphere. 

Salmon (1985) has derived a different set of semi-geostrophic equations valid for 
variable Coriolis parameter ( f )  by considering a shallow rotating layer of inviscid, 
homogeneous fluid in a Cartesian system with f(x, y ) .  Although convenient, the 
device of variable f in a Cartesian system is rather unnatural since it ignores 
important metric factors that arise, for instance, if x and y are Mercator coordinates. 
The derivation of the PSG equations in $2.3 does not assume any particular 
geometry of the underlying solid planet as is implicit in the choice of f(x,y) in 
Salmon’s approach. On the other hand, apart from the tropics, Salmon’s system of 
equations is likely to be more accurate since the kinetic energy in the Hamiltonian 
is approximated by the total geostrophic kinetic energy whereas only part of this is 
retained in the PSG formulation of Hamilton’s principle. 

It should be noted that the f-plane limit of the PSG equations can only be 
considered to arise from making the tangent plane approximation a t  the (rotational) 
pole of the spherical system. This limit is not the same for tangent plane 
approximations a t  other points on the sphere owing to the omission of the axial 
velocity contribution to the kinetic energy. The usual procedure is to set up the 
Cartesian system with z-axis oriented in the local vertical direction and to ignore the 
horizontal component of 51. 

Since the Cartesian form of the PSG equations is exactly the same form as the f- 
plane semi-geostrophic equations, they may be solved using exactly the same 
techniques (Schubert 1985). It would be interesting to extend the baroclinic 
instability studies of Hoskins & West (1979) and Hoskins & Heckley (1981) to flows 
with a background potential vorticity gradient using the PSG equations in 
geostrophic momentum coordinate form. The equations could also be used in the 
study of large-amplitude planetary Rossby waves in the middle atmosphere, for 
which the Burger number would be small. 

The time-averaged state of the terrestrial atmosphere is dominated by zonal flow 
and low zonal wavenumbers (m = 1,  2 and 3). The PSG equations could therefore 
form the basis of a low-order climate model of the type used by Shutts (1983) and 
White & Green (1982) where the time-averaged motion is represented explicitly and 
the dynamical effects of transient baroclinic instabilities are parametrized in terms 
of the transfer of potential vorticity. The existence of a diagnostic relation between 
the potential vorticity and @* (e.g. (90)) is crucial to this type of parametrized 
climate model. 

Finally, the PSG set could be used to study the dynamics of the intertropical 
convergence zone since the phenomenon could be considered to be quasi-zonal. The 
geostrophic momentum coordinate transformation could be used to obtain the 
coordinate stretching property used with such success in mid-latitude frontogenesis 
studies. 

I am indebted to Dr A. A. White for his close reading and important criticisms of 
early drafts of this paper, and to Dr J. Norbury for getting me started on this study. 
I would also like to thank Drs M. J. P. Cullen, S. Garner and R. J. Purser for many 
helpful discussions and their comments on the first draft. 
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